## Introduction to Virtual Reality

Information and communications technology

This is an introductory course where you will learn how to train high-dimensional non-linear models, represented by deep artificial neural networks (ANN), using few lines of Python code. Deep learning is an umbrella term for methods using deep nets, i.e., ANNs that consist of several consecutive layers of artificial neurons. The course gives you a brief overview of gradient descent which is the most widely used algorithm for tuning the weights of deep nets.

–

Self-paced

Online

Information and communications technology

Online

Aalto University, FITech

Intermediate

2 By Aalto University (ECTS)

Free of charge

High-school math (functions, derivatives, vectors). Basic Python programming (variables, functions, loops). The course Machine Learning with Python.

This course is an introduction to deep learning.

This is an introductory course where you will learn how to train high-dimensional non-linear models, represented by deep artificial neural networks (ANN), using few lines of Python code. Deep learning is an umbrella term for methods using deep nets, i.e., ANNs that consist of several consecutive layers of artificial neurons. The course gives you a brief overview of gradient descent which is the most widely used algorithm for tuning the weights of deep nets. You will learn some powerful tricks that allow tuning billions of ANN weights using only hundreds of training examples. Some of the most successful deep learning methods are enabled by few clever regularization techniques, such as data augmentation and transfer learning, to avoid overfitting.

After successfully completing the course, the student

- understands how ANNs can be used for learning and evaluating high-dimensional non-linear models.
- understands the basic principle of gradient descent.
- is able to build, and train ANNs using the Python package Keras.
- is able to diagnose the learning process by comparing training with validation loss.
- is able to use data augmentation to synthetically enlarge the training set.
- is able to implement transfer learning by fine-tuning a pre-trained deep net.

The grading is based on coding assignments and student projects.

Information and communications technology

Location:

Espoo

Level:

Beginner

Information and communications technology

Location:

Online

Level:

Beginner

Information and communications technology

Location:

Online

Level:

Beginner

Information and communications technology

Location:

Espoo

Level:

Beginner

Information and communications technology

Location:

Online

Level:

Intermediate

Information and communications technology

Location:

Espoo

Online

Level:

Intermediate

Information and communications technology

Location:

Espoo

Level:

Intermediate

Information and communications technology

Location:

Espoo

Level:

Intermediate

Information and communications technology

Location:

Espoo

Level:

Advanced

Information and communications technology

Location:

Espoo

Level:

Advanced

Information and communications technology

Location:

Espoo

Level:

Advanced